Section D - Graduate Attributes

D.1 Introduction

The role of professionals who innovate, design, implement and maintain computers, computing systems, and computing applications has become essential to both the economic development of, and the provision of services to, society. Typical computing activities require several roles that are named and recognized in different ways in many jurisdictions.¹ These roles, with a degree of overlap among them, are defined by their respective distinctive competencies.

The development of a computing professional is a continuous learning process. The first stage may be the attainment of an *accredited educational qualification*, the graduate stage. The second stage, following a period of training and experience, may lead to *professional registration*, *licensure*, or some other professional recognition, depending on the country or jurisdiction. In addition, computing professionals are expected to engage in life-long learning in order to maintain and enhance competency throughout their working lives.

Because of the universally essential nature of computer applications and the mobility of professionals across jurisdictional boundaries due to globalization, there is a real need to identify academic programs that adequately prepare graduates for entry into a computing profession based on generally recognized knowledge and abilities across country and other jurisdictional boundaries. Toward this end, the Seoul Accord is established as a mechanism for recognizing the equivalence of accredited educational qualifications in the development of computing professionals. The Seoul Accord provides for mutual recognition of graduates of accredited programs² among the Signatories of the Accord. This Accord is based on the principle of equivalence of content and outcomes of accredited programs. This document, Seoul Accord Graduate Attributes (SAGA), presents the Accord Signatories' consensus on the generally-accepted attributes of graduates for programs included in the Accord.

Section 2 of this document provides background, scope, limitations, and the contextual interpretation for the graduate attributes (presented in Section 5). Section 3 provides a number of definitions that form a common basis for understanding the general applicability of the attributes. General range statements are presented in Section 4, and the graduate attributes themselves are provided in Section 5.

D.2 Background for the Graduate Attributes

D.2.1 Purpose of Graduate Attributes

The *graduate attributes* are intended to define the scope and standards for programs that are recognized by the Seoul Accord, as well as to assist Accord Signatories and Provisional members in developing

¹ The term *computing* is used in this document as a discipline in a broad sense, and it includes many other general terms such as *informatics, computing and IT-related,* and *information and communication technology* that may be used elsewhere. It is recognized that different terminology is used in different countries, and that specific titles or designations may have differing legal empowerment or restrictions within individual jurisdictions.

 $^{^{2}}$ The term *program* is used in this document to indicate the academic qualification that prepares a graduate for entry into a computing profession. Other terms for the same thing, such as *course*, may be used in some educational systems.

outcomes-based accreditation criteria for use in their respective jurisdictions. Also, the graduate attributes guide bodies that are currently developing their accreditation systems with a goal of seeking to become Signatories of the Accord.

Graduate attributes form a set of individually-assessable outcomes that are indicative of a graduate's potential competency. The graduate attributes are exemplars of the attributes expected of a graduate from an accredited program. Each attribute is a succinct statement of an expected capability, qualified, if necessary, by a range indication appropriate to the type of program The attributes identify the characteristics of graduates of all computing programs that fall within the scope of the Seoul Accord. A Signatory may identify additional attributes that differentiate specific programs accredited by the Signatory.

D.2.2 Limitation of Graduate Attributes

Each Signatory defines the criteria against which computing educational programs are evaluated for accreditation. The Accord is based on the principle of *Substantially Equivalent qualification*. That is, programs are not expected to have identical outcomes or content, but rather are expected to produce graduates who are prepared to enter professional careers in computing. The graduate attributes provide a point of reference for accreditation bodies to describe the outcomes of a Substantially Equivalent qualification. The graduate attributes do not represent "international standards" for accreditation.

D.2.3 Scope and Organization of Graduate Attributes

In defining the attributes, it is useful to distinguish among various types of post-secondary educational preparation. In conformance with corresponding terminologies employed by the International Engineering Alliance Educational Accords³, the graduate attributes contrast the differences among the educational preparation for what will be called the *computing professional*, the *computing technologist*, and the *computing technician*. Each of these categories is unique in the range of problem solving skills and professional competency, and the categories are generally typified by successively less formal educational requirements. For each attribute name, characteristics or abilities relative to the attribute that should be obtained through formal education or training are listed for each of the roles of computing professional, computing technologist, and computing technician. The scope of the Seoul Accord encompasses only those academic programs that are accredited by Accord Signatories as preparing graduates for roles as computing professionals.

Each of the attribute statements is formulated for the professional, technologist, and technician using a common stem, with varying additions appropriate to each educational track. For example, for the **Knowledge for Solving Computing Problems** attribute:

Common Stem: Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization ...

Computing Professional Range: ... to the abstraction and conceptualization of computing models from defined problems and requirements.

Computing Technologist Range: ... to defined and applied computing procedures, processes, systems, or methodologies.

Computing Technician Range: ... to a wide variety of practical procedures and practices.

³ The International Engineering Alliance Educational Accords are comprised of the Washington Accord, Sydney Accord, and Dublin Accord (see <u>http://www.ieagreements.org/</u>)

The resulting statements are shown below for this example:

for Seoul Accord (Computing Professional)	for Computing Technologist graduate	for Computing Technician graduate
graduate	5 2	
Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to a wide
abstraction and conceptualization of computing models from defined problems and requirements.	defined and applied computing procedures, processes, systems, or methodologies.	variety of practical procedures and practices.

The range qualifier in several attribute statements uses the notions of complex computing problems, broadly-defined computing problems, and well-defined computing problems or the notions of complex activities, broadly-defined activities, and well-defined activities. These designators for different levels of problem complexity and professional activity are defined in Section 4, and the full set of graduate attribute definitions is given in Section 5.

D.2.4 Contextual Interpretation

The graduate attributes are stated generically and are applicable to all computing disciplines. In interpreting the statements within a disciplinary context, each individual statement may be amplified and given particular emphasis, but in doing so its substance must not be altered and its individual elements must not be ignored.

D.3 Definitions Associated with the Graduate Attributes

The **practice area** of a computing professional, computing technologist, or computing technician is defined both by the area of computing knowledge and skills, and by the nature of the activities performed.

A **computing problem** in any domain is one that can be solved by the application of computing knowledge, skills, and generic competencies.

Solution means an effective proposal for resolving a problem, taking into account all relevant technical, legal, social, cultural, economic, and environmental issues and respecting the need for sustainability.

D.4 Common Range and Contextual Definitions Associated with the Graduate Attributes

	A Complex A Broadly-defined A Well-defined					
		Computing Problem is	Computing Problem is	Computing Problem is		
		a computing problem	a computing problem	a computing problem		
		having some or all of	having some or all of	having some or all of		
		the following	the following	the following		
			characteristics:	characteristics:		
	Characteristic					
1	Range of conflicting	Involves wide-ranging or	Involves a variety of	Involves several issues,		
	requirements	conflicting technical,	factors, which may	but with few of these		
		computing, and other	impose conflicting	exerting conflicting		
	Denth of an alors's	issues	constraints	constraints		
2	Depth of analysis	Has no obvious solution,	Can be solved by	Can be solved in		
	required	and requires conceptual	application of well-	standardised ways		
		thinking and innovative analysis to formulate	proven analysis techniques			
		suitable abstract models	teeninques			
3	Depth of knowledge	A solution requires the	A solution requires	Can be resolved using		
5	required	use of in-depth computing	knowledge of principles,	limited theoretical		
	required	or domain knowledge and	and applied procedures or	knowledge, but normally		
		an analytical approach	methodologies	requires substantial		
		that is based on well-	practical knowledge			
		founded principles		1		
4	Familiarity of issues	Involves infrequently-	Belongs to families of	Is frequently encountered		
	2	encountered issues	familiar problems, which and thus familiar to m			
			are solved in well-	practitioners in the field;		
			accepted ways; context	context may be unfamiliar		
			may be unfamiliar			
5	Level of problem	Is outside problems	May be partially outside	Is encompassed by		
	· ·		those encompassed by	standards and/or		
		standards and standard	standards or standard	documented procedures		
		practice for professional	practice	of practice		
		computing				
6	Extent of	Involves diverse groups	Involves several groups	Involves a limited range		
	stakeholder	of stakeholders with	of stakeholders with	of stakeholders with		
	involvement and	widely varying needs	differing and occasionally	differing needs		
	level of conflicting		conflicting needs			
-	requirements	Has significant	Has consequences that are	Has concerned that and		
7	Consequences	Has significant	Has consequences that are	Has consequences that are		
		consequences in a range of contexts	important locally, but may extend to a broader	important locally, and usually are not far-		
		OI COMEAIS	context	reaching		
8	Interdependence	Is a high-level problem	Is part of, or systems	Is a discrete component of		
0	meruepenuenee	possibly including many	within, a complex	a computing system		
		component parts or sub-	computing problem	a comparing system		
		problems	computing problem			
I		Problems				

D.4.1 Range of Problem Solving

9	Requirement	Identification of a	Identification of a	A requirement or the
	identification	requirement or the cause	requirement or the cause	cause of a problem can be
		of a problem is ill defined	of a problem is possible	determined by well-
		or unknown	from a set of known	established ways
			options	-

D.4.2 Range of Computing Activities

		A G L		
		A Complex	A Broadly-defined	A Well-defined
		Computing Activity	Computing Activity	Computing Activity is a
		is a computing activity	is a computing activity	computing activity or
		or project that has	or projects that has	project that has some or all
		some or all of the	some or all of the	of the following
		following	following	characteristics:
	Characteristic	characteristics:	characteristics:	
1	Range of	Involves the use of	Involves a variety of	Involves a limited range of
	resources (people,	diverse resources	resources	resources
	money,			
	equipment,			
	materials,			
	information, and			
	technologies)			
2	Level of	Requires resolution of	Requires resolution of	Requires resolution of
	interactions	significant problems	occasional interactions	interactions between limited
		arising from interactions	among technical,	technical and computing
		among wide-ranging or	computing, contextual,	issues, with little or no
		conflicting technical,	and other issues, of	impact from broader issues
		computing, contextual,	which few are	
		or other issues	conflicting	
3	Innovation	Involves creative use of	Involves the use of new	Involves the use of existing
		knowledge of computing	resources, techniques, or	resources techniques, or
		or domain principles in	computing processes in	computing processes in new
	0	novel ways	innovative ways	ways
4	Consequences to	Has significant	Has consequences that	Has consequences that are
	society and the	consequences in a range of contexts	are most important	locally important and not far-
	environment	or contexts	locally, but may extend	reaching
5	Familiarity	Can avtand bayand	more widely Requires a knowledge of	Paguiras a knowledge of
2	raiiiiiaiity	Can extend beyond previous experiences by	normal operating	Requires a knowledge of practical procedures and
		applying principles-	procedures and	practices for widely applied
		based approaches	*	operations and processes
		based approaches	processes	operations and processes

D.5 Graduate Attributes

The following table provides profiles of graduates of three types of postsecondary educational computing programs. See Section 4 for definitions of *complex, broadly-defined*, and *well-defined* computing problems and activities. Note that the Seoul Accord applies only to the Computing Professional graduate, and that the columns for Computing Technologist and Computing Technician are included for comparative and clarification purposes only.

		Differentiating Characteristic	for Seoul Accord (Computing Professional) Graduate	for Computing Technologist Graduate	for Computing Technician Graduate
1	Academic Education	Educational depth and breadth	Completion of an accredited program of study designed to prepare graduates as computing professionals	Completion of a program of study typically of shorter duration than for professional preparation	Completion of a program of study typically of shorter duration than for technologist preparation
2	Knowledge for Solving Computing Problems	Breadth and depth of education and type of knowledge, both theoretical and practical	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to defined and applied computing procedures, processes, systems, or methodologies	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to a wide variety of practical procedures and practices
3	Problem Analysis	Complexity of analysis	Identify and solve <i>complex</i> computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines	Identify, formulate, research literature, and solve <i>broadly-</i> <i>defined</i> computing problems reaching substantiated conclusions using analytical tools appropriate to the discipline or area of specialization	Identify and solve <i>well-defined</i> computing problems reaching substantiated conclusions using codified methods of analysis specific to the field of activity

4	Design/Development	Breadth and uniqueness	Design and evaluate solutions	Design solutions for <i>broadly</i> -	Design solutions for <i>well</i> -
	of Solutions	of computing problems,	for <i>complex</i> computing	<i>defined</i> computing technology	<i>defined</i> computing problems,
		i.e., the extent to which	problems, and design and	problems, and contribute to	and assist with the design of
		problems are original	evaluate systems, components,	the design of systems,	systems, components, or
		and to which solutions	or processes that meet specified	components, or processes to	processes to meet specified
		have previously been	needs	meet specified needs with	needs with appropriate
		identified or codified		appropriate consideration for	consideration for public health
				public health and safety,	and safety, cultural, societal,
				cultural, societal, and	and environmental
				environmental considerations	considerations
5	Modern Tool Usage	Level and	Create, select, or adapt and then	Select and apply appropriate	Apply appropriate techniques,
		appropriateness of the	apply appropriate techniques,	techniques, resources, and	resources, and modern
		tool to the type of	resources, and modern	modern computing tools to	computing tools to <i>well</i> -
		activities performed	computing tools to <i>complex</i> computing activities, with an	<i>broadly-defined</i> computing activities, with an	<i>defined</i> computing activities, with an awareness of the
			understanding of the limitations	understanding of the limitations	limitations
6	Individual and Team	Role in, and diversity of,	Function effectively as an	Function effectively as an	Function effectively as an
6		the team	individual and as a member or	individual and as a member or	individual and as a member in
	Work	the team	leader of a team in multi-	leader in diverse technical	diverse technical teams
			disciplinary settings	teams	diverse technical teams
7	Communication	Level of communication	Communicate effectively with	Communicate effectively with	Communicate effectively with
1	e on an	according to type of	the computing community	the computing community and	the computing community and
		activities performed	about <i>complex</i> computing	with society at large about	with society at large about
		*	activities by being able to	broadly-defined computing	well-defined computing
			comprehend and write effective	activities by being able to	activities by being able to
			reports, design documentation,	comprehend and write effective	comprehend the work of others,
			make effective presentations,	reports, design documentation,	document one's own work, and
			and give and understand clear	make effective presentations,	give and understand clear
			instructions	and give and understand clear	instructions
		NT 1100 / / / / / /	YY 1 , 1 1	instructions	YY 1 . 1 1 1
8	Computing	No differentiation in this	Understand and assess societal,	Understand and assess societal,	Understand and assess societal,
	Professionalism and	characteristic except	health, safety, legal, and cultural issues within local and	health, safety, legal, and cultural issues within local and	health, safety, legal, and cultural issues within local and
	Society	level of practice	global contexts, and the	global contexts, and the	global contexts, and the
			consequential responsibilities	consequential responsibilities	consequential responsibilities
			relevant to professional	relevant to computing	relevant to computing
			computing practice	technologist practice	technician practice
L			comparing practice	teennonogist practice	teennerun pruettee

9	Ethics	No differentiation in this	Understand and commit to	Understand and commit to	Understand and commit to
		characteristic except	professional ethics,	professional ethics,	professional ethics,
		level of practice	responsibilities, and norms of	responsibilities, and norms of	responsibilities, and norms of
			professional computing practice	computing technologist practice	computing technician practice
10	Life-long Learning	No differentiation in	Recognize the need, and have	Recognize the need, and have	Recognize the need, and have
		this characteristic	the ability, to engage in	the ability, to engage in	the ability, to engage in
		except level of practice	independent learning for	independent learning for	independent learning for
			continual development as a	continual development as a	continual development as a
			computing professional	computing technologist	computing technician

D.6 Conclusion

Judgments on the standards of academic qualifications are often subjective. Only in the formal accreditation process is evidence judged against defined criteria. These criteria have become increasingly aligned through international accords, driven by globalisation of computing practice and the accompanying mobility of computing graduates and professionals. The Graduate Attributes listed here comprise a definition by the Seoul Accord of a set of outcomes that typify potential competency and performance on the part of graduates of computing programs within the scope of the Accord. The Graduate Attributes will undoubtedly be refined as the computing discipline and the criteria of the Accord Signatories evolve.

D.7 Acknowledgement

This document is an adaptation of a similar document that is used by the Washington Accord, Sydney Accord, and Dublin Accord for engineering, engineering technology, and engineering technician, respectively (see <u>http://www.ieagreements.org/</u>). The work of the developers of the engineering attributes is gratefully acknowledged as the basis for this document.